APPLICATION ON HEPTAGONAL FUZZY NUMBER IN NUERAL NETWORK [GENETIC ALGORITHM]

${ }^{1}$ A.VIRGIN RAJ, ${ }^{2}$ T. SIVA SANKARI
${ }^{1}$ Assistant Professor, ${ }^{2}$ Research Scholar PG \& Research Department of Mathematics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamil Nadu, India.

Abstract

In this paper,we find out the efficient pesticides using the crossover operation of Genetic algorithm.

\section*{KEYWORDS}

Fuzzy sets, Fuzzy number, heptagonal fuzzy number, neural network, genetic algorithm.

\section*{1. INTRODUCTION}

In 1965, Zadeh Introduced the Fuzzy sets to represent and information possessing non-statistical certainties. However, the story of fuzzy logic started much earlier. The rotation of an infinite valued logic was "Fuzzy Set" where he described the mathematics of fuzzy set theory, and by extension fuzzy logic. Many operarations were carried out using fuzzy numbers. Fuzzy neural networks are usually based on neural network architecture with fuzzification of inputs, outputs, weights, or rules that are applied using fuzzy system.

2. PRELIMINARIES

2.1 Definition: Fuzzy Number

A fuzzy number A is a fuzzy set on the real line R, must satisfy the following conditions;
i) $\quad \mu_{\tilde{\mathrm{A}}}\left(x_{0}\right)$ is piecewise continuous
ii) There exist at least one $x_{0} \in \mathrm{R}$ with $\mu_{\tilde{\mathrm{A}}}\left(x_{0}\right)=1$
iii) $\quad \mu_{\tilde{\mathrm{A}}}$ must be normal and convex.

2.2 Types of fuzzy numbers:

There are many types of fuzzy numbers they are

1. Triangular Fuzzy Number
2. Trapezoidal Fuzzy Number
3. Pentagonal Fuzzy Number
4. Hexagonal Fuzzy Number
5. Heptagonal Fuzzy Number
6. Octagonal Fuzzy Number

In this section Genetic algorithm of neural network is used to solve heptagonal fuzzy number

Definition2.3 (Triangular fuzzy number). Triangular fuzzy number is defined as $\bar{A}=\{a, b, c\}$ where all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers and its membership function is given below

$$
\begin{aligned}
& \frac{(\mathrm{x}-\mathrm{a})}{(\mathrm{b}-\mathrm{a})} \text {, for } a \leq x \leq \mathrm{b} \\
& \mu_{\bar{A}}\left(x_{0}\right)=\left\{\begin{array}{cc}
\frac{(\mathrm{c}-\mathrm{x})}{(\mathrm{c}-\mathrm{b})}, & \text { for } \mathrm{b} \leq x \leq \mathrm{c} \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Definition 2.4 (Pentagonal fuzzy number). A pentagonal fuzzy number of a fuzzy set P is defined as $\mathrm{P}=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ and its membership functions is given by

Definition 2.5 (Hexagonal Fuzzy number). A fuzzy number $\bar{A} h$ is a hexagonal fuzzy number denoted by $\bar{A}_{h}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ are real numbers satisfying $a_{2}-a_{1} \leq a_{3}-a_{2}$ and $a_{5}-a_{4} \leq a_{6}-a_{5}$, if its membership function $\boldsymbol{\mu}_{\overline{\mathrm{A} h}}(x)$ is given by,

Definition 2.6 (Heptagonal Fuzzy Number). A Heptagonal Fuzzy number Āhp $=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right.$, $\left.\mathrm{a}_{7}\right)$ is a subset of fuzzy number in R with following membership function,

3. NEURAL NETWORK

An artificial neural network is an information processing system that has certain performance characteristics in common with biological neural network. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that:
i) Information processing occurs at many simple elements called neurons.
ii) Signals are passed between neurons over connection links.
iii) Each connection link has an associated weight, which multiplies the signal transmitted.
iv) Each neuron applies an activation function (Usually nonlinear) to its net input (Sum of Weighted Input Signals) to determine its Output Signals.
The following figure illustrates a fully connected two input, Single-output, feed-forward, multilayer network with a single hidden layer consisting of three nodes.

4. GENETIC ALGORITHM:

A genetic algorithm is a method for solving both constrained and non-constrained and unconstrained optimization problem based on a natural selection process that mimics biological evaluation. The algorithm repeatedly modifies a population of individual solution. Genetic Algorithms are computer programs that evolve in ways that resemble natural selection and can be applied to solve complex problems. Genetic Algorithms are inspired by Darwin's theory about evolution. Living organisms are consummate problem solver. They exhibit a versatility that puts the best computer programs to shame. This observation is especially important for computer experts, who may spend months or years of intellectual effort on an algorithm, whereas organism comes by their abilities through the apparently undirected mechanism of evolution and natural selection. Genetic Algorithm were invented by John Holland and developed by him and his student and colleagues in early 1970s. Since then they have been used extensively for problem solving. Genetic Algorithms belong to the larger class of evolutionary algorithms, which generate solution
to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection and crossover.

4.6.1 Introduction to crossover operator:

The crossover operator is analogous to reproduction and biological crossover. In this more than one parent is selected and one are more off-spring are produced using genetic material of the parent. Crossover is usually applied in a genetic algorithm with a high probability.

4.6.2 Operations used on genetic algorithm:

(i) Genetic coding
(ii) Fitness function
(iii)Selection process
(iv)Crossover operator

4.6.3 Types of crossover operator:

There are three types of crossover for using in genetic algorithm. There are
(i) One-point crossover
(ii) Multi-point crossover
(iii) Uniform crossover
(iv) Arithmetic crossover
(i) One-Point crossover:

In this one-point crossover, a random crossover point is selected and the tails of its two parents are swapped to get new off-spring.

Fig 1 Single Point crossover

Example:

$\{0,1,2,3,4,5,6,7\}$
$\{7,6,3,1,4,2,8,5\}$
Suppose we choose $\mathrm{k}=5$ then we have
$\{0,1,2,3, \mathbf{4}, \mathbf{2}, \mathbf{8}, \mathbf{5}\}$
$\{7,6,3,1,4,5,6,7\}$

(ii) Multi Point crossover:

Although single point crossover was inspired by biological processes, it has one major drawback that certain combinations of schema cannot be combined in some situations. A multipoint crossover can be used in such situations whereby the crossover is driven by a variable, i.e., number of crossover points selected, say m . As a result, the performance of generating offspring is greatly improved. Where multiple crossover points $(\mathrm{m}=2)$ are randomly selected.

0	1	2	4	2	3	6	7	8	9

0	1	2	3	4	5	6	7	8	9

5	8	9	4	2	3	5	7	5	8

5	8	9	3	4	5	5	7	5	8

Fig 2 Multipoint crossover

(iii) Uniform crossover:

In a uniform crossover, we don't divide the chromosome into segments; rather we treat each gene separately. In this, we essentially flip a coin for each chromosome to decide whether or not it will be include in the off-spring. We can also bias the coin to one parent, to have more genetic material in the child from that parent.

Fig 3: Uniform crossover
(iv) Arithmetic Crossover:

Some arithmetic operation is performed to make a new offspring.

Fig. 4: Arithmetic crossover

4.6.4 Procedure for genetic algorithm

Step 1: First randomly select two machines L_{1} and L_{2}.
Step 2: Next select another two machines L_{3} and L_{4}.
Step 3: Convert all the elements fuzzy number into its membership function.

Step 4: Set the pentagonal fuzzy number in weights of the Machines.
Step 5: Take the values from the Machine.
Step 6: Calculate the cost matrix $m=\sum x_{\mathrm{i}} y_{\mathrm{i}}$
Step 7: Do the crossover operation and find maximum values of the Machine.

5. NUMERICAL EXAMPLE:

Suppose there are four types of lands $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$, and L_{4}. Let the possible attributes to above lands $\mathrm{w}=(\mathrm{a}, \mathrm{b}$, $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$) as universal set. Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$ represents the seven types of seeds like (maize, black gram, ground nut, sea same, corn, ragi, red grain) respectively. Compute the Heptagonal fuzzy number in four land L_{1}, L_{2}, L_{3}, and L_{4} by considering completing work.

Step 1: $\mathrm{L}_{1}=(28,7,18,6,5,4,8) ; \mathrm{L}_{2}=(30,8,9,18,3,7,11)$
Step 2: $\mathrm{L}_{3}=(26,8,20,4,6,3,7) ; \mathrm{L}_{4}=(31,5,23,6,7,9,15)$
Step 3: Convert the Heptagonal fuzzy number into membership function
$\mathrm{L}_{1}=(2.8,0.7,1.8,0.6,0.5,0.4,0.8)$
$\mathrm{L}_{2}=(3.0,0.8,0.9,1.8,0.3,0.7,1.1)$
$L_{3}=(2.6,0.8,2.0,0.4,0.6,0.3,0.7)$
$L_{4}=(3.1,0.5,2.3,0.6,0.7,0.9,1.5)$

Step 4:

Consider the above fuzzy number is fuzzy weights Lij
$\mathrm{L}_{11}=0.6 ; \mathrm{L}_{12}=0.7 ; \mathrm{L}_{13}=0.8, \mathrm{~L}_{14}=0.9 ; \mathrm{L}_{15}=0.75 ; \mathrm{L}_{16}=0.85 ; \mathrm{L}_{17}=0.5$
$\mathrm{L}_{21}=0.6 ; \mathrm{L}_{22}=0.7 ; \mathrm{L}_{23}=0.8, \mathrm{~L}_{24}=0.9 ; \mathrm{L}_{25}=0.75 ; \mathrm{L}_{26}=0.85 ; \mathrm{L}_{27}=0.5$
$\mathrm{L}_{31}=0.6 ; \mathrm{L}_{32}=0.7 ; \mathrm{L}_{33}=0.8, \mathrm{~L}_{34}=0.9 ; \mathrm{L}_{35}=0.75 ; \mathrm{L}_{36}=0.85 ; \mathrm{L}_{37}=0.5$
$\mathrm{L}_{41}=0.6 ; \mathrm{L}_{42}=0.7 ; \mathrm{L}_{43}=0.8, \mathrm{~L}_{44}=0.9 ; \mathrm{L}_{45}=0.75 ; \mathrm{L}_{46}=0.85 ; \mathrm{L}_{47}=0.5$
Table: 1 Calculate the cost matrix for Land-1

N	2.8	0.7	1.8	0.6	0.5	0.4	0.8
0.6	1.68	0.42	1.08	0.36	0.30	0.24	0.48
0.7	1.96	0.49	1.26	0.42	0.35	0.28	0.56
0.8	2.24	0.56	1.44	0.548	0.40	0.82	0.64
$\mathbf{0 . 9}$	$\mathbf{2 . 5 2}$	$\mathbf{0 . 6 3}$	$\mathbf{1 . 6 2}$	$\mathbf{0 . 5 4}$	$\mathbf{0 . 4 5}$	$\mathbf{0 . 3 6}$	$\mathbf{0 . 7 2}$
0.75	2.1	0.525	1.35	0.45	0.37	0.3	0.6
0.85	2.38	0.595	1.53	0.51	0.425	0.34	0.68

0.5	1.4	0.35	0.9	0.3	0.25	0.2	0.4

$\operatorname{Max}=\{2.52,0.63,1.62,0.54,0.45,0.36,0.72\}$
Table: $\mathbf{2}$ Calculate the cost matrix for Land-2

N	3.0	0.8	0.9	1.8	0.3	0.7	1.1
0.6	0.18	0.48	0.54	4.68	0.18	0.42	0.66
0.7	0.21	0.56	0.63	1.26	0.21	0.49	0.77
0.8	0.24	0.64	0.72	1.44	0.24	0.56	0.88
$\mathbf{0 . 9}$	$\mathbf{2 . 7}$	$\mathbf{0 . 7 2}$	$\mathbf{0 . 8 1}$	$\mathbf{1 . 6 2}$	$\mathbf{0 . 2 7}$	$\mathbf{0 . 6 3}$	$\mathbf{0 . 9 9}$
0.75	2.25	0.6	0.675	1.35	0.225	0.525	0.825
0.85	2.55	0.68	0.765	1.53	0.255	0.595	0.935
0.5	1.5	0.4	0.45	0.9	0.15	0.35	0.55

$\operatorname{Max}=\{2.7,0.72,0.81,1.62,0.27,0.63,0.99\}$

Table: 3 Calculate the cost matrix for Land-3

N	2.6	0.8	2.0	0.4	0.6	0.3	0.7
0.6	1.56	0.48	1.2	0.24	0.36	0.18	0.42
0.7	1.82	0.56	1.4	0.28	0.42	0.21	0.49
0.8	2.08	0.64	1.6	0.32	0.48	0.24	0.56
$\mathbf{0 . 9}$	$\mathbf{2 . 3 4}$	$\mathbf{0 . 7 2}$	$\mathbf{1 . 8}$	$\mathbf{0 . 3 6}$	$\mathbf{0 . 5 4}$	$\mathbf{0 . 2 7}$	$\mathbf{0 . 6 3}$
0.75	1.95	0.6	1.5	0.3	0.45	0.25	0.525
0.85	2.21	0.68	1.7	0.34	0.51	0.255	0.595
0.5	1.3	0.4	1	0.2	0.3	0.15	0.35

$\operatorname{Max}=\{2.34,0.72,1.8,0.36,0.54,0.27,0.63\}$
Table:4 Calculate cost matrix for Land-4

N	3.1	0.5	2.3	0.6	0.7	0.9	1.5
0.6	1.86	0.30	1.38	0.36	0.42	0.54	0.9
0.7	2.17	0.35	1.61	0.42	0.49	0.63	1.05
0.8	2.48	0.40	1.84	0.48	0.56	0.72	1.2
$\mathbf{0 . 9}$	$\mathbf{2 . 7 9}$	$\mathbf{0 . 4 5}$	$\mathbf{2 . 0 7}$	$\mathbf{0 . 5 4}$	$\mathbf{0 . 6 3}$	$\mathbf{0 . 8 1}$	$\mathbf{1 . 3 5}$
0.75	2.325	0.375	1.725	0.45	0.525	0.675	1.125
0.85	2.635	0.425	1.955	0.51	0.595	0.765	1.275
0.5	1.55	0.25	1.15	0.3	0.35	0.45	0.75

$\operatorname{Max}=\{2.79,0.45,2.07,0.54,0.63,0.81,1.35\}$
Step 6: Therefore we get among the seven pesticides urea is the best.
Step 7: Select the two lands L_{1} and L_{2} then do the crossover operation

$$
\begin{aligned}
& \mathrm{L}_{1}=2.52,0.63,1.62,0.54,045,0.36,0.72 \\
& \mathrm{~L}_{2}=2.7,0.72,0.81,1.62,0.27,0.63,0.99
\end{aligned}
$$

Randomly choose an integer k in $\{0,1, \ldots 7\}$
Suppose $\mathrm{k}=1$ then for $\mathrm{L}_{1}{ }^{\prime}$ and $\mathrm{L}_{2}{ }^{\prime}$
$\mathrm{L}_{1}{ }^{\prime}=2.7,0.72,0.81,1.62,0.27,0.63,0.99$
$\mathrm{L}_{2}{ }^{\prime}=2.52,0.63,1.62,0.54,045,0.36,0.72$
$\mathrm{k}=3$
$\mathrm{L}_{1}{ }^{\prime}=2.7,0.72,1.62,0.54,045,0.36,0.72$
$\mathrm{L}_{2}{ }^{\prime}=2.52,0.63,0.81,1.62,0.27,0.63,0.99$
Suppose k $=5$
$\mathrm{L}_{1}{ }^{\prime}=2.7,0.72,0.81,1.62,0.45,0.36,0.72$
$\mathrm{L}_{2}{ }^{\prime}=2.52,0.63,1.62,0.54,0.27,0.63,0.99$
Suppose k=6
$\mathrm{L}_{1}^{\prime}=2.7,0.72,1.62,1.62,0.45,0.63,0.99$
$\mathrm{L}_{2}{ }^{\prime}=2.52,0.63,0.81,0.54,0.27,0.36,0.72$
Therefore the maximum value is
$\{2.7,0.72,1.62,1.62,0.45,0.63,0.99\}$
Next we choose two lands L_{3} and L_{4} and again do the crossover operation.
$\mathrm{L}_{3}=\{2.34,0.72,1.8,0.36,0.54,0.27,0.63\}$
$\mathrm{L}_{4}=\{2.71,0.45,2.07,0.54,0.63,0.81,1.35\}$
Suppose k = 1
$\mathrm{L}_{3}{ }^{\prime}=\{2.71,0.45,2.07,0.54,0.63,0.81,1.35\}$
$\mathrm{L}_{4}{ }^{\prime}=\{2.34,0.72,1.8,0.36,0.54,0.27,0.63\}$

Suppose $\mathrm{k}=2$
$\mathrm{L}_{3}{ }^{\prime}=\{2.71,0.72,1.8,0.36,0.54,0.27,0.65\}$
$\mathrm{L}_{4}{ }^{\prime}=\{2.34,0.45,2.07,0.54,0.63,0.81,1.35\}$
Suppose k = 3
$\mathrm{L}_{3}{ }^{\prime}=\{2.71,0.72,2.07,0.54,0.63,0.81,1.35\}$
$\mathrm{L}_{4}{ }^{\prime}=\{2.34,0.45,1.8,0.36,0.54,0.27,0.63\}$
Maximum value is $\{2.71,0.72,2.07,0.54,0.63,0.81,1.35\}$
Comparing (1) and (2)
$\{2.7,0.72,1.62,1.62,0.45,0.63,0.99\}$
$\{2.79,0.72,2.07,0.54,0.63,0.81,1.35\}$
Suppose k = 3
$\{2.7,0.72,2.07,0.54,0.63,0.81,1.35\}$
$\{2.79,0.72,1.62,1.62,0.45,0.63,0.99\}$
Suppose k $=4$
$\{2.7,0.72,2.07,1.62,0.45,0.63,0.99\}$
$\{2.79,0.72,1.62,0.54,0.63,0.81,1.35\}$
Suppose k=5
$\{2.7,0.72,2.07,1.62,0.63,0.81,1.35\}$
$\{2.79,0.72,1.62,0.54,0.45,0.63,0.99\}$
Maximum value is
$\{2.7,0.72,2.07,1.62,0.63,0.81,1.35\}$
Finally we get the maximum.

6.CONCLUSION

In the numerical example we have compute the efficient pesticides then we took the crossover operation and compare with four lands to find out the maximum value. From those seven pesticides we found that one efficient pesticide that will be commonly used in the field of agriculture.

7.REFERENCES

1. Ash, Timur, "Dynamic node creation in backpropagation networks", Department of computer science and engineering, University of California at San Diego, Preliminary Manuscript, (1989).
2. Anderson, James A, Rosenfeld, Edward, "Neurocomputing: Foundations of research", MIT Press, Cambridges, Massachusetts, (1988).
3. A. Gnana Santhosh Kumar, S Cynthiya Margaret Indrni, "An Application of Pentagonal Fuzzy Number Matrix Decision Making", International Journal of Engineering and Management Research, 7(3): 2250-0758, (2017).
4. Barnabas Bede, "Mathematics of Fuzzy sets and Fuzzy logic", Springer Publications, pp. 51-78, (1992).
5. Buckley. J, Qu. Y, "Solving system of linear fuzzy equations", Fuzzy sets and systems, 43: 3343, (1991).
6. Carling. A, "Introducing Neural Network", SIGMA PRESS - Wilmslow, United Kingdom (1992).
7. D. Graupe, "Principles of artificial neural network (2nd edition)", World Scientific Publishing, (2007).
8. D. Dubois and H. Prade, "Operations on Fuzzy Number", International Journal of Systems science, 9(6): pp. 613-626, (1978).
9. Daniel Svozil, Vladimir Kvasnicka, Jiri Pospichal, "Introduction to multi-layer feed-forward neural nentworks", 39: pp. 43-62, (1997).
10. Dunois. D and Prade. H, "Operations on Fuzzy numbers", International Journal of systems science, 9: pp. 613-626.
11. E.H. Mamdani, "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", IEEE Proceedings, 121(12): pp. 1585-1588, (1974).
12. G.S. Mahapatra and T.K. Roy, "Intuitionistic Fuzzy Number and Its Arithmetic operation with Application on system Failure", Journal of uncertain systems, 7: pp. 92-107, (2013).
13. George J. Klir, Boyan, "Fuzzy sets and Fuzzy logic theory and applications", Prentice-Hall Inc, pp.574, (1995).
14. G. Facchinetti \& N. Pacchiaroti, "Evaluations of Fuzzy quantities, fuzzy sets and systems", 157: pp. 892-903, (2006).
15. George Bojadziev and Maria Bojadzier, "Fuzzy sets and fuzzy logic applications", World scientific publications, 5: pp. 29-59, (1995).
16. G. Uthra, K. Thangavelu and S. Shunmugapriya, "Ranking Generalized Intuitionistic Pentatonal Fuzzy Number by Centroidal Method", International Journal of Mathematics and its Applications, 5(4-D): 2347-1557, pp. 589-593.
17. Gholamreza Jandaghi, Reza Tehrani, Davoud Hosselnpour, Rahmatollah Ghollapour and Seyed Amir Shahidi Shadkam, "Application of Fuzzy-neural networks in multi-ahead forecast of stock price", African Journal of Business Management 4(6): 1993-8233, pp. 903-914, (2010).
18. H.K. Baurah, "Towards forming a field of fuzzy sets", International Journal of energy, Information and communications, 2(1): pp. 16-20, (2011).
19. H. Bustine and P. Burillo, "Vague sets and Intuitionistic Fuzzy sets", Fuzzy sets and systems, 79: pp. 403-405, (1996).
20. J.M. Zurada, "Artificial Neural Systems", PWS Publishing Company, St. Paul, MN (1995).
